首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   708篇
  免费   137篇
  国内免费   177篇
测绘学   18篇
大气科学   225篇
地球物理   284篇
地质学   306篇
海洋学   107篇
天文学   27篇
综合类   13篇
自然地理   42篇
  2023年   6篇
  2022年   15篇
  2021年   17篇
  2020年   24篇
  2019年   38篇
  2018年   18篇
  2017年   30篇
  2016年   24篇
  2015年   37篇
  2014年   43篇
  2013年   55篇
  2012年   31篇
  2011年   45篇
  2010年   38篇
  2009年   83篇
  2008年   47篇
  2007年   51篇
  2006年   63篇
  2005年   46篇
  2004年   32篇
  2003年   29篇
  2002年   33篇
  2001年   33篇
  2000年   24篇
  1999年   29篇
  1998年   29篇
  1997年   15篇
  1996年   19篇
  1995年   14篇
  1994年   15篇
  1993年   8篇
  1992年   5篇
  1991年   7篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
排序方式: 共有1022条查询结果,搜索用时 15 毫秒
31.
The threshold of motion of non-fragmented mollusc shells was studied for the first time under oscillatory flow. In this regard, flume experiments were used to investigate the threshold of motion of three bivalve and three gastropod species, two typical mollusc classes of coastal coquina deposits. The sieve diameters ranged from 2·0 to 15·9 mm. These experiments were performed on a flat-bottom setup under regular non-breaking waves (swell) produced by a flap-type wave generator. The critical Shields values for each species of mollusc were plotted against the sieve and nominal diameter. Moreover, the dimensionless Corey shape factor of the shells was evaluated in order to investigate the effect of mollusc shell shapes on the threshold of motion. According to their critical Shields parameter, the mollusc threshold data under oscillatory flow present smaller values than the siliciclastic sediments when considering their sieve diameter. In addition, the mollusc datasets are below the empirical curves built from siliciclastic grain data under current and waves. When considering the nominal diameter, the critical Shields parameter increases and the mollusc data are closer to siliciclastic sediments. Bivalves, which have a flat-concave shape (form factor: 0·27 to 0·37), have a higher critical Shields parameter for smaller particles and more uniform datasets than the gastropod scattered data, which have a rounded shape (form factor: 0·58 to 0·62) and have varied morphologies (ellipsoidal, conical and cubic). The comparison between previous current-driven threshold data of bioclastic sediment motion and the data of mollusc whole shells under oscillatory flow shows a fair correlation on the Shields diagram, in which all datasets are below the mean empirical curves for siliciclastic sediments. These findings indicate that the shape effect on the transport initiation is predominant for smaller shells. The use of the nominal diameter is satisfactory to improve the bioclastic and siliciclastic data correlation.  相似文献   
32.
A new elastoplastic model called loading memory surface based on the critical state concept and the multi‐surface framework is proposed for geomaterials. The model uses a hypoelastic formulation and two plastic mechanisms. The formulations of the model are made in three‐dimensional stress–strain space and work under both monotonic and cyclic loadings. A newly introduced formalism makes it possible to obtain the cyclic response directly from the monotonic loading one. This formalism gives a three‐dimensional generalization of the well‐known Masing rule. The model has been validated against test results of Hostun sand under several conditions: monotonic and cyclic, drained and undrained, tests in compression and in extension, and at different confining pressures and different densities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
33.
Stream–subsurface exchange plays a significant role in the fate and transport of contaminants in streams. It has been modelled explicitly by considering fundamental processes such as hydraulic exchange, colloid filtration, and contaminant interactions with streambed sediments and colloids. The models have been successfully applied to simulate the transport of inorganic metals and nutrients. In this study, laboratory experiments were conducted in a recirculating flume to investigate the exchange of a hydrophobic organic contaminant, p,p′‐dichloro‐diphenyl‐dichloroethane (DDE), between a stream and a quartz sand bed. A previously developed process‐based multiphase exchange model was modified by accounting for the p,p′‐DDE kinetic adsorption to and desorption from the bed sediments/colloids and was applied to interpret the experimental results. Model input parameters were obtained by conducting independent small‐scale batch experiments. Results indicate that the immobilization of p,p′‐DDE in the quartz sand bed can occur under representative natural stream conditions. The observed p,p′‐DDE exchange was successfully simulated by the process‐based model. The model sensitivity analysis results show that the exchange of p,p′‐DDE can be sensitive to either the sediment sorption/desorption parameters or colloidal parameters depending on the experimental conditions tested. For the experimental conditions employed here, the effect of colloids on contaminant transport is expected to be minimal, and the stream–subsurface exchange of p,p′‐DDE is dominated by the interaction of p,p′‐DDE with bed sediment. The work presented here contributes to a better mechanistic understanding of the complex transport process that hydrophobic organic contaminants undergo in natural streams and to the development of reliable, predictive models for the assessment of impacted streams. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
34.
CH3I、CHCl3、C2HCl3和CH2Br2是挥发性卤代烃4种重要成分,对大气化学产生重要影响。于2018年10月在西太平洋进行船基现场培养实验,研究微量元素Fe (50 nmol/L)、酸化(pH=7.9)、酸化(pH=7.9)和微量元素Fe (50 nmol/L)耦合作用、微量元素Fe (50 nmol/L)和N/P (16∶1)耦合作用及沙尘(4 mg/L)对浮游植物释放CH3I、CHCl3、C2HCl3和CH2Br2含量的影响。结果表明,与对照组相比,实验组CH3I、C2HCl3和CH2Br2的释放均被不同程度抑制;CHCl3的释放除添加沙尘时表现抑制作用外,其他条件下均为促进作用;实验组培养周期内叶绿素a浓度较高,而营养盐浓度变化规律不明显。总的来说,酸化和微量元素Fe可能是影响浮游植物释放挥发性卤代烃的重要限制因素,沙尘对促进浮游植物生长繁殖的影响更为显著。  相似文献   
35.
In deep-sea environments, plant remains of several origins are found, including branches, twigs, leaves, and wood pieces, among others. As most of the deep-sea bottoms are oligotrophic and nutrient-limited, plant remains provide an oasis of localized organic enrichment and a substrate for colonization. Sunken wood was suggested to play an important evolutionary role in the diversification of chemosynthetic ecosystems, possibly representing stepping stones for the colonization between vent and seep ecosystems. In order to understand colonization processes of the Pacific Costa Rican meio-epifaunal assemblages associated with sunken wood, a field experiment was conducted on Mound 12 (8°55.778′N, 84°18.730′W) at ~1,000 m water depth. Woodblocks were placed in four different habitats (Mussel beds, tube worms, near mussel beds, rubble bottoms), and different local environmental conditions (seepage-active and seepage-inactive sites). Seven experimental Douglas fir woodblocks (each 1,047 cm2 in surface area) were deployed from the R/V Atlantis using the manned submersible Alvin in February 2009 and recovered after 10.5 months in January 2010. Sample processing and analyses led to a data set of abundance (total 9,951 individuals) and spatial distribution of nine meio-epifaunal higher taxa/groups. Meio-epifaunal densities on individual woodblocks ranged from 3 to 26 ind.10 cm2. Copepods accounted for the highest abundances (75.1%), followed by nauplii larvae (11.7%) and nematodes (9.8%). The maximum number of individuals (26.3 ind.10 cm−2) was found in blocks placed in seepage-inactive areas (near active mussel beds) in contrast to 2.9 ind.10 cm−2 in active areas (within a mussel bed). A hierarchical cluster analysis grouped blocks according to seepage activity and not to habitat, but tests of similarity showed no significant differences in higher taxon composition and abundances, probably owing either to substrate homogeneity or low sample size. Copepods were the most abundant representatives, suggesting that this group is one of the most successful in colonizing in the early stage of succession, in this case while hardwood substrates are not yet decomposed or bored by bivalves.  相似文献   
36.
Diffusive mass exchange into immobile water regions within heterogeneous porous aquifers influences the fate of solutes. The percentage of immobile water is often unidentified in natural aquifers though. Hence, the mathematical prediction of solute transport in such heterogeneous aquifers remains challenging. The objective of this study was to find a simple analytical model approach that allows quantifying properties of mobile and immobile water regions and the portion of immobile water in a porous system. Therefore, the Single Fissure Dispersion Model (SFDM), which takes into account diffusive mass exchange between mobile and immobile water zones, was applied to model transport in well‐defined saturated dual‐porosity column experiments. Direct and indirect model validation was performed by running experiments at different flow velocities and using conservative tracer with different molecular diffusion coefficients. In another column setup, immobile water regions were randomly distributed to test the model applicability and to determine the portion of immobile water. In all setups, the tracer concentration curves showed differences in normalized maximum peak concentration, tailing and mass recovery according to their diffusion coefficients. These findings were more pronounced at lower flow rates (larger flow times) indicating the dependency of diffusive mass exchange into immobile water regions on tracers' molecular diffusion coefficients. The SFDM simulated all data with high model efficiency. Successful model validation supported the physical meaning of fitted model parameters. This study showed that the SFDM, developed for fissured aquifers, is applicable in porous media and can be used to determine porosity and volume of regions with immobile water. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
37.
In several empirical and modelling studies on river hydraulics, dispersion was negatively correlated to surface roughness. In this study, it was aimed to investigate the influence of surface roughness on longitudinal dispersion under controlled conditions. In artificial flow channels with a length of 104 m, tracer experiments with variations in channel bed material were performed. By use of measured tracer breakthrough curves, average flow velocity, mean longitudinal dispersion, and mean longitudinal dispersivity were calculated. Longitudinal dispersion coefficients ranged from 0·018 m2 s?1 in channels with smooth bed surface up to 0·209 m2 s?1 in channels with coarse gravel as bed material. Longitudinal dispersion was linearly related to mean flow velocity. Accordingly, longitudinal dispersivities ranged between 0·152 ± 0·017 m in channels with smooth bed surface and 0·584 ± 0·015 m in identical channels with a coarse gravel substrate. Grain size and surface roughness of the channel bed were found to correlate positively to longitudinal dispersion. This finding contradicts several existing relations between surface roughness and dispersion. Future studies should include further variation in surface roughness to derive a better‐founded empirical equation forecasting longitudinal dispersion from surface roughness. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
38.
Controlled laboratory experiments reveal that the lower part of turbidity currents has the ability to enter fluid mud substrates, if the bed shear stress is higher than the yield stress of the fluid mud and the density of the turbidity current is higher than the density of the substrate. Upon entering the substrate, the turbidity current either induces mixing between flow‐derived sediment and substrate sediment, or it forms a stable horizontal flow front inside the fluid mud. Such ‘intrabed’ flow is surrounded by plastically deformed mud; otherwise it resembles the front of a ‘bottom‐hugging’ turbidity current. The ‘suprabed’ portion of the turbidity current, i.e. the upper part of the flow that does not enter the substrate, is typically separated from the intrabed flow by a long horizontal layer of mud which originates from the mud that is swept over the top of the intrabed flow and then incorporated into the flow. The intrabed flow and the mixing mechanism are specific types of interaction between turbidity currents and muddy substrates that are part of a larger group of interactions, which also include bypass, deposition, erosion and soft sediment deformation. A classification scheme for these types of interactions is proposed, based on an excess bed shear stress parameter, which includes the difference in the bed shear stress imposed by the flow and the yield stress of the substrate and an excess density parameter, which relies on the density difference between the flow and the substrate. Based on this classification scheme, as well as on the sedimentological properties of the laboratory deposits, an existing facies model for intrabed turbidites is extended to the other types of interaction involving soft muddy substrates. The physical threshold of flow‐substrate mixing versus stable intrabed flow is defined using the gradient Richardson number, and this method is validated successfully with the laboratory data. The gradient Richardson number is also used to verify that stable intrabed flow is possible in natural turbidity currents, and to determine under which conditions intrabed flow is likely to be unstable. It appears that intrabed flow is likely only in natural turbidity currents with flow velocities well below ca 3·5 m s?1, although a wider range of flows is capable of entering fluid muds. Below this threshold velocity, intrabed flow is stable only at high‐density gradients and low‐velocity gradients across the upper boundary of the turbidity current. Finally, the gradient Richardson number is used as a scaling parameter to set the flow velocity limits of a natural turbidity current that formed an inferred intrabed turbidite in the deep‐marine Aberystwyth Grits Group, West Wales, United Kingdom.  相似文献   
39.
王娴  李建康  丁欣  张德会 《地质论评》2016,62(S1):407-408
绿柱石与硅铍石均为铍矿物家族中的主要成员,是重要的工业铍矿物,利用背散射和电子探针研究矿物特性时,常可见两者共生或发生交代的现象(饶灿,2009;Reyf, 2008; Evensen, 1999),其结晶条件对于成矿环境与成矿机制均具有重要的指示意义。前人已进行了关于绿柱石,硅铍石等铍矿物稳定性的实验研究,但研究多采用高温淬火的高温高压实验装置,误差大,且无法原位观测矿物结晶习性(王振杰, 1992;Sirbescu et al., 2009),本文利用热液金刚石压腔,原位观测了绿柱石与硅铍石的结晶过程,得到了它们结晶的温压条件及结晶习性。  相似文献   
40.
基于CMIP5模式的中国气候变化敏感性预估与分析   总被引:4,自引:0,他引:4  
以CMIP5提供的26个全球气候系统模式的温度和降水数据为基础,采用区域气候变化指数(Regional Climate Change Index,RCCI)分析中国的不同区域对21世纪气候变化响应的敏感性。结果表明,三种排放情景(RCP 2.6、RCP 4.5、RCP 8.5)下,21世纪全期,气候变化最敏感的区域分布在西藏地区,其次为我国西北地区以及东北地区,气候变化敏感性最低的区域分布在我国内蒙古中东部、华北地区以及长江中下游一带,且高排放情景对应更高的气候变化敏感性。对RCCI指数贡献因子分析结果表明,对中国气候变化敏感性贡献的大小依次为Δσ_TΔσ_pΔRRWAF。冬夏两季温度变化的大值区与RCCI指数的大致区分布一致,RCCI大小的分布很大程度上由温度变化的敏感性决定。而夏季降水变化的大值区主要出现在西藏地区、华南地区和东北地区,冬季降水变化的大值区则主要出现在黄河以南长江以北的中原地区以及东北地区。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号